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in magnetically ordered crystals and light in cholesteric 
liquid crystals (Dmitrienko & Belyakov, 1977). 
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Abstract 1. Introduction 

The direct-analysis formalism of Kurki-Suonio [e.g. Isr. 
J. Chem. (1977), 16, Nos. 2-3, 115-123, 132-136] is 
modified to apply to the calculation of nuclear 
distributional moments (xay"z~), which are linear 
combinations of the multipole moments (rkytmp). They 
are integrated from the radial coefficients of the 
corresponding multipole terms through Gaussian and 
difference series procedures. An application to the 
thermal neutron diffraction structure factors of 
Merisalo & Larsen [Acta Cryst. (1977), A33, 351-354] 
on zinc indicates that the moment (x  2) agrees with the 
anharmonic result of Merisalo & Larsen. (z z) does 
not show discrepancy with the value based on har- 
monic assumption. The existence of the third-order 
component in the nuclear smearing function and, due 
to this, anharmonicity of thermal motion is well 
established, but the magnitude o f ( x  3) is not accurately 
defined on the basis of the present data. The ratios of 
the fourth and second moments do not reveal deviation 
from harmonic thermal smearing. 

* Part of the doctoral thesis of Aino Vahvaselk/4 (1978). Report 
Series in Physics, HU-P-DI0, University of Helsinki, Department 
of Physics, Helsinki, Finland. 

0567-7394/80/061050-08501.00 

The study of nuclear distributional moments by direct 
analysis in this work is intended to deal with deform- 
ation of harmonic nuclear smearing in hexagonal 
close-packed zinc. The non-centrosymmetric positions 
of the Zn atoms offer a possibility to study anharmon- 
icity beyond merely centrosymmetric contributions. 
The direct-analysis formalism applied has been 
developed from the principles in studies concerning 
electronic charge and nuclear density distributions 
presented by Kurki-Suonio and his collaborators (e.g. 
Kurki-Suonio & Meisalo, 1967; Kurki-Suonio & 
Ruuskanen, 1971 ; Kurki-Suonio, Merisalo, Vahvaselk/i 
& Larsen, 1976). 

Merisalo & Larsen (1977) (hereafter M & L) have 
recently performed elastic neutron scattering measure- 
ments of the structure factors of Zn in order to study 
anharmonicity of lattice vibrations by a parameter- 
fitting procedure. The insufficiency of a harmonic 
formalism to explain thermal vibrations in crystals has 
caused vivid interest to focus on anharmonicity. This 
phenomenon seems to be amenable to study by several 
different methods as summarized by Willis & Pryor 
(1975), and indicated by the studies of Whiteley, Moss 
& Barnea (1978); Merisalo, J~irvinen & Kurittu (1978); 
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Merisalo, Peljo & Soininen (1978); Merisalo & 
Jiirvinen (1978) and Kurki-Suonio, Merisalo & Pel- 
tonen (1979). The references mentioned conduct the 
analysis in terms of some modifications of parameter 
fitting. 

We use the structure factors of M & L as 
experimental data. Besides a mere demonstration of the 
applicability of direct analysis to the calculation of 
relevant moments of nuclear distribution the choice of 
the Zn data of M & L as our object has another motive 
in a comparative and complementary study of anha r  
monicity. Direct analysis and parameter fitting are 
fundamentally different means of working with experi- 
mental data, though the leading theme in the treat- 
ments of the structure factors of zinc by M & L and us 
is the use of site-symmetrized expansions of real 
spherical harmonics for the effective potential and the 
nuclear density, respectively. 

2. Direct  analysis  

The nuclear density distribution s(r) of a crystal atom 
and the physical spatial observables connected with it 
obey the site symmetry of the particular atom, which 
means one of the 32 crystal point symmetries. To make 
this behaviour formally explicit s(r) is expressed as a 
multipole expansion (Kurki-Suonio, 1977a): 

1 
- -  Simp(r).Vtmp( O, O)), (1) s (r) = ~ .  
Ntmp imp 

where the origin is at the atomic position studied, a 
local Cartesian coordinate system adapted to the site 
symmetry is applied and the real spherical harmonics, 

cos mop 
Ytmp ---- Tim+ = P~(cos 0) 

sin me 

1 = 0 ,  1 . . . .  ; m = 0 ,  1 . . . . .  I, (2) 

with the normalization 
2zr (1 + m)! 

N~,, w = .1 lYtmpl 2 d O =  (1 + 6,,,0)2l + 1 (l m)! '  (3) 
( 4 n )  

are chosen according to the requirements of site 
symmetry. 

The nuclear distribution s(r) is assumed to be a 
superposition of weighted nuclear smearing functions r, 
(Kurki-Suonio, Merisalo, Vahvaselkii & Larsen, 1976) 

where n runs over the atoms of the unit cell and 7", is 
the Fourier transform of the thermal smearing function 
T n • 

The assumption that  the nuclear thermal motion 
corresponds to a harmonic potential field leads to a 
Gaussian smearing function, which produces a Gaus- 
sian temperature factor. We introduce it in the well 
known form 

T(b) = exp [-2zr2(Bl r/2 + B 2 x 2 +B 3 #2)1, (6) 

where Bi equals (u~), i = 1, 2, 3, the mean square 
displacement of the atom along the principal axis i, and 
r/, x, # represent the scattering vector b in the Cartesian 
coordinate system defined by the principal axes. 

The experimental information available for the 
calculation of any quantities describing the nuclear 
density distribution is contained in the structure factors 
G obtained from Bragg diffraction experiments with 
thermal neutrons. In direct analysis we choose to 
consider quantities X that can be expressed as sums 

X = ~ c  G ,  (7) 
v 

where the summation is over the reciprocal lattice {b,}. 
In the direct analysis of X-ray data the residual-term 

problem in connection with the series (7) has been 
settled by assuming harmonic behaviour of the temper- 
ature factor above the cutoff limit. The values of the B l 
parameters have been fixed by the criterion of natural 
continuation of the experimental atomic factors over 
the cutoff limit in b space (Kurki-Suonio & Fontell, 
1964; Vahvaselkii & Kurki-Suonio, 1975). This is 
realized by making the radial difference densities AStm p, 
! = 0, 2, in difference multipole expansion (1) flat at the 
origin. This is achieved by adjusting the B i values of the 
temperature factor (6) in Gca~c to make the second 
derivatives of the radial monopole and quadrupole 
difference densities zero at the origin (Kurki-Suonio, 
1977b). Here the series representation (8) i s  used for 
Astm p with the coefficients A G  = Gv, ob s -- Gv,catc below 
the cutoff and A G  = 0 beyond it. The application of 
this procedure to neutron diffraction data means that 
we assume the anharmonicity of the smearing to vanish 
asymptotically at large (sin 0)/2. 

s(r) = Y g, r , ( r  - r,). (4) 
i'l 

where the summation runs over all the atoms of the 
crystal, g ,  and r, are the nuclear scattering amplitude 
and the position of the nth atom. Due to this 
superposition model the structure factor has the 
familiar form 

G ( b ) =  Z g ,  T,(b~) exp (2zul) .r ,) ,  (5) 
n 

3. M o m e n t s  o f  nuclear distribution 

A representation of the behaviour for small enough 
values of r of the radial coefficient Stmp (r) in (1) of a 
crystal atom can be obtained (Kurki-Suonio, 1967) in 
terms of structure factors as 

4:n:(--i) I 
Stmp(r) - ~. G jt(2ztbr)Ytmp(U ~, v ), 

VNlmp v 
(8) 
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where V is the volume of the unit cell, b, u, v are the 
spherical coordinates in reciprocal space, and the 
phases of the structure factors G are given with respect 
to the origin at the nucleus for which the calculation is 
performed. 

Although strop(r), especially So(r), may give a 
concrete view of the distribution around the nuclear 
position, the reliability of the radial densities is not as 
good as that of integrated quantities (Kurki-Suonio, 
1971). Equation (7) indicates that the sooner the 
coefficient c(b) ,  called 'the reciprocal distribution' of X 
approaches zero the less the quantity is dependent on 
the structure factors with high b values. The examples 
given by Kurki-Suonio (1971) indicate that the 
reciprocal distribution of integrated quantities behaves 
more favourably in this respect than that of radial 
distributions Stmp (r). 

We define the nuclear distributional moments (multi- 
pole moments) as the expectation values 

f s(r) rkYtmp d 3 r 1 
--- - (s(r) r k Ytmp d3 r, (9) ( rk Ylrap) = f s(r) d 3 r g" 

where we integrate over the whole space and denote the 
integral f s ( r )da r  by g. After the insertion of the 
multipole expansion (1) in (9) we get 

00 

( rk Ytmp) = ~ Ntmp .(Slmp(r) rk + 2 dr, (10) 
g o 

where the orthogonality of the harmonics Ytmp has been 
made use of. (rkytmp) is a parameter calculable directly 
from the series (7) since on inserting (8) in (10) it can be 
written as 

47r(--i) / 
(rkYlmp) - - -  E G,,Ytmp(U,,, v,,) 

Vg 
R 

x fjt(27rb r) r k+2 dr. (11) 
0 

The lowest possible value which k can assume here is 
k = - l -  2 (Kurki-Suonio, 1971). 

In writing in (11) the upper limit of integration as R 
instead of infinity we assume the nuclear smearing of 
the atom considered to be contained within a sphere of 
radius R. This spherical volume partitioning (SVP) 
method, as it is called by Dawson (1975), is based on 
the assumption of locality of the atoms (Kurki-Suonio 
& Salmo, 1971). As regards the nuclear smearing 
functions, SVP is certainly better justified than in the 
case of charge densities, and we expect no significant 
contributions from neighbouring atoms in the sphere 
that already contains the whole smearing function of 
the atom at hand. This means that all multipole 
moments (11) must saturate at a certain radius R. 

If the experimental value of the multipole moment is 
desired the evaluation of the residual term in the 
expansion (11) is necessary. The procedure applied is 

equivalent to approximating the experimental structure 
factors in the residual-term region by a harmonic 
model. The series (1 l) is used in practice as a difference 
series with A G  = G~,ob s - G  ca~c as coefficients up to 
the cutoff in b and zero beyond that. Experimental 
distributional moments are obtained by adding the 
results given by the difference series to the moments of 
the Gaussian nuclear distribution (6) of the relevant 
atom. No corrections due to the tails of neighbouring 
distributions are needed because of the good separ- 
ation of the nuclei in the crystal. This procedure is an 
extension of the method of Hosemann & Bagchi (1962) 
for charge densities. It has been applied before in 
direct-analysis formalism in the calculation of radial 
charge densities (e.g. Kurki-Suonio & Ruuskanen, 
1971) and electron counts in spheres (Kurki-Suonio & 
Salmo, 1971). To obtain a Gaussian multipole moment 
(rkYtmp) for the atom n the Fourier transform of 
g, T,(b) is inserted for s(r) in (9), where the integration 
is extended over the atomic sphere of radius R. We 
perform the calculation of the multipole moments as a 
function of R. In order to obtain characteristic values of 
the moments for the atoms studied we apply the 
assumption of saturation stated above. The validity of 
the assumption of locality (and the goodness of data) 
will then appear in the degree of saturation. In the case 
of good saturation a well defined experimental value of 
the moment follows. A poor saturation will indicate 
inaccuracy of the moment as defined by the data. 

Suitable linear combinations of the (rkYtmp) quanti- 
ties can be conveniently used to characterize the 
thermal motion of nuclei in crystals. We shall par- 
ticularly apply them in the study of anharmonicity. We 
limit this study on atoms located at unit-cell positions 
exactly specified by symmetry. Site symmetry indi- 
cates what moments to look for. A general Gaussian 
smearing function (6) possesses all the multipole mo- 
ments Im+ with l and m even. For an axial one with 
B~ -- B 2 all the moments with m 4:0 vanish (and for a 
spherical one both l and m must be zero). Appearance 
of any other multipoles, if allowed by the site 
symmetry, will serve as direct indication of anhar- 
monicity. Anharmonicity will also change the relations 
of the moments from the values fixed by the har- 
monic model. 

4. Application to zinc 

Zinc crystallizes according to the crystallographic 
space group P63/mmc (No. 194) with two atoms per 
unit cell in the special positions 3, ~, ¼ (A) and ~, 3, ~ (B) 
related by inversion. Zn has a hexagonal close-packed 
structure with umt-cell dimensions a = b = 2.664 and 
c -- 4-945 A. The local Cartesian coordinate axes 
conform to the 6m2 site symmetry of the atoms by 
making the z axis II 6, the y axis _L m and the x axis II 2 
as indicated in Fig. 1 for the atom A. 
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The indices lmp of the spherical harmonics  Ylmp in the 
multipole expansion (1) are allowed to have the values 
(m + 2j ,  3#, +), # a n d j  any  integers such that  l _> m _> 
0 (Kurki-Suonio,  Merisalo & Peltonen, 1979). We shall 
consider the monopole,  quadrupole,  octupole and 
hexadecapole  terms with Imp = 00+ ,  20+,  33+,  40+ .  

The experimental  data  in our analysis  are the h k !  
room-tempera ture  single-crystal  thermal neutron 00 2 
diffraction structure factors of  M & L scaled and 004  

006  
corrected for extinction to a harmonic  model by 101 
least-squares fitting. M & L omit the reflexions 100 and 1 o 2 
110 from their calculations.  The checking of the scale 10 3 
of the structure factors and the asymptot ic  para- 104 
metrizat ion of the nuclear smearing model indicate 105 

106 
slight changes  to the parameters  of  M & L. The g ,  and 1 0 7 
r,, parameters  na tura l ly  remain the same, g,, = 0.57 × 1 1 2 
10 -14 m (Bacon,  1972) and the position parameters  r,  114 
as given above, also the equali ty of  B,~ and Bn2 remains 1 16 
due to symmet ry ,  but the experimental  structure factors 20 0 201 
of  M & L have to be multiplied by 0 .993  and B,~ = Bn2 2 0 2 
and B,, 3 have to be changed to B,n = B,,2 = 0.0111 A 2 2 0 3 
and B,3 = 0 .0276  A 2. Table 1 lists the experimental  204  
structure factors Gob s modified as to the scale and 205 

206 
referred to the origin of the unit cell applied here, their 2 1 0 
s tandard  deviat ions o and the theoretical  harmonic  211 
structure factors Gca~c. 2 1 2 

213 The natural  displacement  quanti t ies connected with a 
214 

zinc nucleus are the mean square deviations (x  2) and 2 1 5 
(z2).  The cubic and quart ic mean deviations ( X 3 ) ,  2 2 0  

(x  4), (z 4), (x  2z 2), also natural ly  arise due to 222 
symmetry .  Table 2 indicates how the expectat ion values 3 0 0 
(~Ytmp) are worked on to yield the desired results. In 302  

304  
order to obtain the experimental  moments  we proceed 3 10 
through the Gauss ian  difference-series calculat ions as 
presented in the previous chapter.  

Figs. 2, 3 and 4 present the moments  as functions of 
R, the radius of  the sphere of integration. The s tandard  
deviations are deduced on the basis of  the errors given [~2] 
in Table 1. Fig. 2 of the second moments  gives the 0.040 
ultimate limits of  the mean square deviations according 
to the harmonic  and anharmonic  models of M & L. Fig. 0.03(3 
3 gives the limits connected with the quart ic  deviations 

OB 

QA 

Fig. 1. The unit cell and the local Cartesian coordinate axes in a Zn 
crystal. 

Table 1. The experimental structure factors of zinc, 
their experimental standard deviations and the 
theoretical structure factors calculated according to 

equation (5) 

b = 2(sin 0)/2 
I A-~] Gob s o Gc~lc 

0.40444 - 1.052 0.005 - 1.043 
0. 80890 0. 795 0.004 0. 799 
1.21334 --0.498 0.003 --0.512 
0.47830 -0.939 0.005 --0.927 
0.59284 0.502 0.003 0.501 
0.74560 0.776 0.004 0.776 
0.91770 -0.378 0-002 -0.383 
1. 10012 -0.535 0.003 -0.543 
1.28844 0. 244 0.001 0.246 
1.48044 0.312 0.002 0.319 
0.85276 -0.930 0.005 -0-922 
1.10360 0.71 I 0.004 0. 706 
1.42682 -0.448 0.002 --0-453 
0.86690 -0.472 0-002 --0-484 
0.89016 0.808 0.004 0.819 
0.95660 0.456 0.002 0.443 
1.05810 -0.692 0.003 -0.686 
1. 18568 -0.343 0.002 -0.339 
1.33186 0.481 0.002 0-481 
1.49122 0.223 0.001 0-217 
1.14680 -0.416 0.002 -0-428 
1-16448 --0.716 0.004 --0-725 
1.21602 0.397 0.002 0.391 
1.29738 0.618 0.003 0.606 
1.40336 -0.302 0.002 -0.300 
1.52888 -0.431 0.002 --0-425 
1.50150 0.679 0.003 0.697 
1-55502 --0.643 0-003 -0.637 
1. 30034 0. 745 0.004 0. 788 
1.36178 -0.725 0.004 -0.721 
1.53140 0.559 0.003 0.552 
1-56282 -0.340 0.002 -0.334 

0.02C 

0.010 

(z 2) 

"HHHH . . . . . . . . . . .  ~ ~ .  
.\\\\\-. \..\\\.~f.~\\..\\\\\\\\\\\\\\\ \\\\ \\\\\~\~\\\\\\\\ \\\~ 

/ 

y 
[ 

' ' ' 1 ;  0.1 O~ t 1.0 ® ~). 

L J/////z ~- (D 1.332 

,\\x.\\\h~ ~ ~ (~) 1.456A 

Fig. 2. The second moments of the nuclear density distribution in 
Zn. R]: and R~ are the radii for which (x 2) and (z2) are 
evaluated. The circled 1 and 2 are the half-way points between an 
atom in the xy plane and the nearest one in and outside the xy 
plane. + Harmonic limits of M & L. + + Anharmonic limits of 
M&L. 
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Table 2. Moments  o f  nuclear distribution in the 6m2 
site symmetry o f  a Zn atom 

(rZYoo,) = (r  z) = 2(x z) + (z z) 
(rZY2o+) = (rZ{(3 cos z 0 -  1)) = - ( x  z ) + (z 2 ) 
(r3y]3+) = (r]15 sin 3 0(4 cos ] ¢ - 3 cos ¢)) = 60(x ]) 
(r'Yoo+) = (r  4) = ~(x 4) + ( z ' )  + 4(xZz 2) 
(Hyz0+) = (r'½(3 cos z 8-- 1)) = - ~ ( x ' )  + (z 4) + (x2z z) 
(r4y,o+) = (r'1}(35 cos' 0 - 30 cos z 0 + 3)) = (x 4) + (z 4 ) - 6(xZz 2) 

(x z) = ](rZ),00+)- ~(r2y20+) 
(z  2) = {(r2.voo+) + ~(r2yzo,) 
( x b = b~&.v . + ) 
( x ' )  = {(r'.Voo+ ) - ~(r')'zo+) + ~(r'Y,o+ ) 
(z4)  = }(r'Yoo+) + ,~(r4y,0+) + ~(r'Y,o+ > 
(x2z z) = ~(r4yoo÷) + .}l-(r4.v20+) - ~ ( r ' y , o , )  

Symmetry implies the equalities (x  z) = (y2); ( x y )  = ( x z )  = ( y z )  = 0; 
( x ' )  = ( y ' ) ;  (xZz z) = (y2z2);  ( xlxlx~) = O, i ~ j =/= k; ( xtx~) = O, i -~ j. 
Symmetry conditions lead to the relation (xZy 2) = }(x4). All the third 
moments equal zero identically, except (x  3) and (xz2) ,  for which (x  3) = 
- ( x y Z ) .  

in Table 3 based on calculations using the anharmonic 
potential parameters of M & L. 

The Gaussian model distribution approaches zero 
asymptotically and causes the model moments to 
behave regularly as functions of R but the ASIm p c u r v e s  

in (8), from which the experimental contributions to the 
moments are calculated, fluctuate around zero in the 
central region between the nuclei due to the series 
termination error and make the moments fluctuate too. 
The moments (x2),  (z2),  (X4), (Z 4) still display a clear 
saturation around the radius R = 0.6 A. Also (x  2 z 2) 
has an inflexion point at about this radius as an 
indication of saturation. We evaluate these moments at 
the points R s, indicated in the figures, that visually best 
represent the concept of saturation, i.e. at the maximum 
of  (z  4) and at the inflexion points of  the others. These 
regions of inflexion comply suitably with the behaviour 
of the spherical average nuclear distribution 
Soo+(r) r ~ f Yoo+/Noo + d.O = Soo+(r) r 2 2V/-~ in Fig. 5 
calculated according to a Guassian and a difference 
series procedure analogous to the one in this work. The 

half-way points between an atom in the xy plane and 
the nearest one in and outside the xy plane are located 
at 1.332 and 1.456 A. The significant parts of  the 
moment curves occur far before these points are 
reached, which means that our results can be obtained 

[A']' 
O.003 

~z ~) 

o.oo~ , ~ , ' "  ~ ) 

~.o ® d.5 R[~'J 0.1 QS, I 
R; R: 

[l']~ 
0 .002  (x2z2> 

o.ool (b) 
~ /_  \ 

0.1 QS~ 1.0 O) ~1.5 R [ ,~ 
R~' 

(D 1. 332 ,& 
N\\\\\\\x. ~,- (~) 1.456 A 

Fig. 3. The fourth moments  of the nuclear density distribution in 
Zn and their radii of  saturation R x, R~ and R~ :~. + Anharmonic  
limits of  M & L. 

[A 3 ] 

0.00." 

0.001 

I I 
0.1 Q5 tO ® 1.5 R [4]  = 

+ (D 1.332 .& 

Fig. 4. The third moment  of  the nuclear density distribution in Zn. 
+ Anharmonic  limits from column 7, Table 3. 

Table 3. Moments o f  nuclear distribution in Zn 

Column 1. The radii of  saturation. Column 2. Experimental moments  of  nuclear distribution in Zn and their s tandard deviations. The third 
moment  is limited in the interval defined by the minimum and maximum R,~, 0-54 and 0.66 A in column 1. Column 3. Uncertainty in the 
values of the moments due to the determination of  the saturation points. Column 4. Gaussian limiting moments.  Columns 5, 6. Moments  
of  nuclear distribution obtained from the anharmonic models 1 and 2 of  M & L. Column 7. Limits for the mean cubic deviation obtained 
from the parameters of  M & L, Merisalo & Larsen (1979)and  Merisalo, J~irvinen & K urittu (1978). 

I 2 3 4 
R~ [A] This work Gaussian 

0.55 (x  z) = 0 . 0 1 1 3 ( I ) A  2 (2) A 2 0 . 0 1 1 1 A  2 
0.65 (z 2) = 0 .0279 (3) A 2 (3) A 2 0 .0276 A 2 

0 .000022 (2) A 3 
- -  < ( X 3 ) <  - -  0 A 3 

0.000080 (8) A 3 
0.54 (x  4) = 0 .000388 (4) A4 (26) A 4 0 .000370 A 4 
0-66 (z 4) = 0.00222 (2) ]k 4 (3) A 4 0-00229 A 4 
0 .54 (xZz 2) = 0.000312 ( ! )  A 4 (31) A n 0 .000306 A 4 

5 6 
M & L anharmonic 1 M & L anharmonic  2 

0-0113 (3) A z 0-0114 (3) A 2 
0 .0260 (5) A 2 0 .0257 (5) A 2 

0 A 3 0 A 3 

0 .000372 (9) A 4 0 .000388 (6) A 4 
0 .00157 (30) A 4 0 .00145 (41)/~4 
0.000371 (17) A 4 0 .000360 (18) A 4 

0-000115 A ~ 
<<xb< 

0.000325 A 3 



AINO VAHVASELK,~ 1055 

within 'the requirement of locality' (Kurki-Suonio, 
1968) of direct analysis. 

Table 3 reports the radii R s chosen for the saturation 
points and the corresponding experimental moments. 
The appearance of the moment curves induces some 
uncertainty in the values of the moments. For that 
reason Table 3 also gives the indeterminacy of the 
nuclear distributional moments obtained by evaluating 
the moments at R s + 0.05 A for the second moments 
and at R s +_- 0-06 ,/( for the fourth moments. 

The odd moment (x 3) in Fig. 4 displays a different 
behaviour. It grows steeply and reaches a sharp 
maximum. This appearance does not permit any 
statement about the magnitude of the third moment to 
be made. We have.limited its value in Table 3, column 
2, between the values obtained at R --- 0.54 and R -- 
0.66 A, the minimum and maximum of the radii of 
saturation in column 1 of Table 3. 

Table 3 includes the limiting Gaussian moments 

1 oo 

(xa y" z~') = (2~z)3/2 (B1B2 B3)I/2 f f f xX y. 
- - 0 0  

x exp - 2~B--~l + --B2 + ~ dx dy dz 

(2Bl) a/2 (2B2) "/2 (2B,..W 2 

~3/2 

where 2 + # + v = l and 2, #, v are even, otherwise 
(x a y" z ") = 0. 

3.o~- ~oo+ ~/yoo, d~ 
>01 NO0+ 

I 
2.0 

1.5 

1.0 

O.5 

0.1 ~ L 
Ol Q5 1.0 r[~,] 

Fig. 5. The spherical average or monopole experimental nuclear 
density distribution. The experimental limits of error are so small 
that they hardly show in the scale of the figure. 

Table 3 also includes the second moments of the 
anharmonic models 1 and 2 of M & L. We calculated 
the fourth moments of M & L using their potential 
parameters in the expansion of the potential V in their 
expression of an ensemble average 

f x a y" z ~ exp [- V (r)/k s T] dx dy dz 
(x a y .  z ~ ) = 

f exp[-V(r)/k s 7"] dr. dy dz 

(13) 

where k s is the Boltzmann constant and T the absolute 
temperature equal to 295K. The third moment (x 3) 
equals exactly zero on the basis of the parameters of M 
& L. A value different from zero for (x 3) is obtained by 
applying the result of the study of almost-forbidden 
reflexions 301 and 303 by Merisalo, J~irvinen & Kurittu 
(1978). They determine a value of ~ta3 = - (1 .50  + 0.5) 
× 10 -19 J]k -3 for the force constant of the cubic term of 
the potential. Another value, a3a = - (1 .8  + 0.3) x 
10 -19 JA -3, is given by Merisalo & Larsen (1979) in 
their reconsideration of the same data as we have been 
referring to here. We obtain the limits for (x3) indicated 
in column 7 of Table 3 by applying the above aaa values 
and the parameters of the anharmonic models 1 and 2 
of the potential expansion of M & L to a calculation of 
(x 3) according to (13). 

5. D i s c u s s i o n  

The octupole term in the expansion of s(r) (1)deforms 
the centrosymmetric smearing pattern. Harmonicity 
implies centrosymmetry, which is violated if the third 
moment really exists. The accuracy of the structure 
factors at our disposal is not sufficient to determine the 
minute (x 3) better than qualitatively, but Fig. 4 would 
give for (x 3) a value rather close to the values in the 
hatched region obtained as a result of parameter fitting, 
if we evaluate it at 0 .6A,  which approximately 
indicates the point of saturation of the second and 
fourth moments. 

The search for the magnitude of (x 3) motivates one 
to consider the quantity 

Slmp(r)r2 f Ylmp d[2:Stmp(r) r 2 f  YtmP d~Q, (14) 
>0 Nlmp Nlmp 

the radial density of nuclear smearing within the 
positive lobes r' of the spherical harmonics. Its values 
are obtained by Gaussian and difference-series pro- 
cedures analogous to the one applied in the calculation 
of the multipole moments. Fig. 6 represents the 
Gaussian and experimental functions (14) for l -- 0, 2, 
3, 4 in the interesting region of saturation of the 
moments. The Gaussian curves approach zero 
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asymptotically; that is for l -- 2, 4 they extend as far as 
the monopole density. This is natural from the point of 
view of the higher components redistributing the 
contents of the monopole component. The experi- 
mental spherical average or monopole density displays 
negative values above 1 A, which is not physically real. 

0.07: 

0.01 

-0.01 

-0.02 

-0.0: 

0"011 

0.02 

0.01 

-Q01 

I 

0.1 >o i , r,t  l Q5 . .~5 

(a) 

%> r2 f'N~Y--~'d~ 

J 0.1 0.5 1.0 
(b) 

r [~,] 

o11 pL 
ussian 

e× o_/Wo2.~ 

0.5 ~ 1.0 x~tk5 r [l] 
7 " -  

(c) 

0.02 [ |Gaussian 2/'Y,4m. / s~r/~:~ ~d£~ 
0.02 ~ -5 "40* 

I I  
O.Ol. 

-O.Ol 

-0.02 

-0.03 (d) 

Fig. 6. (a) The spherical average or monopole experimental and 
Gaussian nuclear density distributions. (b) The octupole experi- 
mental nuclear density distribution. (c) The quadrupole and (at) 
the hexadecapole experimental and Gaussian nuclear density 
distributions. 

Table 4. Mean square deviations along the principal 
axes in Zn 

(x 2) I A 2 I 

Barron & Munn (1967) (B & M) 0.0085 (5) 

Skelton & Katz (1968) (S & K) 0.0112 (3) 

Rossmanith (1977) (Mo Ktt) 0.0096 (2)* 
(Cu Ka) 0.0104 (12)* 

Merisalo & Larsen (1977) (M & L) 
harmonic 0.0107 (3) 
anharmonic 1 0.0113 (3) 
anharmonic 2 0.0114 (3) 

Kurki-Suonio, Merisalo & Peltonen 
(1979) (K-S, M & P) 

harmonic 0.0109 (3) 
anharmonic 0.0113 (3) 
This work 0.0113 (1) 

(2)'t" 

<z2> IA21 

0.0276 (15) 

0.0259 (10) 

0.0259 (13)* 

0.0273 (5) 
0.0260 (5) 
0.0257 (5) 

0.0272 (5) 
0.0258 (5) 
0.0279 (3) 

(3)t 

" Values deduced on the basis of  the root-mean-square  dis- 
placement values u a and u c of  Rossmani th  (1977). 

~" The uncertainty from column 3 of  Table 3. 

The fluctuation of the hexadecapole density is strong in 
the critical region of saturation of the fourth moments. 
This phenomenon diminishes the credibility of the 
fourth moments on the basis of the experimental data 
applied. Fig. 6 indicates that the region of saturation of 
the moments coincides with, the values where the 
Gaussian distribution has considerably decreased and 
with the beginning of the waving character of the 
experimental density. 

The positive octupole density in Fig. 6(b) extends 
further than the positive monopole density, which is 
unrealistic. However, the existence of the positive 
octupole density looks obvious in Fig. 6(b), but its 
numerical uncertainty seems greater than the standard 
limits of error indicate. The octupole density and the 
third moment in Fig. 4 qualitatively confirm the result 
of Merisalo, Jiirvinen & Kurittu (1978), who repoff 
softening of the effective one-particle potential in the x 
direction and hardening in the opposite direction, which 
indicates larger amplitude of vibration in the x direction 
than in the - x  direction. 

In Table 4, mean square deviations along the 
principal axes are shown with results from several 
authors as well as this work. Barron & Munn (1967) 
(hereafter B & M) calculated their mean square 
deviations from thermodynamic data within the quasi- 
harmonic approximation of the temperature factor. The 
experimental results of Skelton & Katz (1968) (here- 
after S & K) and Rossmanith (1977) were measured 
from single-crystal X-ray diffraction intensities. The 
values of M & L are quoted from their parameter- 
fitting-type analysis. Kurki-Suonio, Merisalo & Pel- 
tonen (1979) (hereafter K-S, M & P) contribute the 
results of their site-symmetrized treatment of anhar- 
monic temperature factors concerning the same zinc 
data as in this work. 

Our (x 2) indicates a definite increase above the value 
of B & M and the best agreement with the experi- 
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mental result of S & K and the anharmonic results of M 
& L and K-S, M & P. Within the experimental limits of 
error and the indeterminacy in the evaluation of the 
moment our (z 2) agrees best with the (z 2) of B & M 
and the harmonic results of M & L and K-S, M & P. 
On the other hand the experimental result of S & K and 
the anharmonic results of M & L and K-S, M & P 
agree with each other, but because of the overlapping of 
the limits of error there is no definite inequality between 
the (z 2) of B & M and the experimental and 
anharmonic (z z) values. 

In Table 3 there is a good agreement between our 
(x ~) and those of the anharmonic models of M & L. 
Our (z 4) exhibits the same trend as (zZ); our values are 
greater than those of M & L. On the other hand, we get 
a smaller (x~z  z) than M & L. Table 5 reports the 
values of suitable ratios of the moments in four cases. 
We have included both the experimental limits of error 
and the uncertainty from column 3 of Table 3 in the 
limits of error of our moments. The values concerning 
this work in Table 5 do not significantly deviate from 
those of Gaussian smearing. 

The second moments (x 2) and (z 2) on the same Zn 
data have been approached by three different methods, 
those of M & L, K-S, M & P and this work. The 
method of analysis of M & L and K-S, M & P is 
parameter fitting, which is basically different from 
direct analysis (e.g. Vahvaselk~i & Kurki-Suonio, 
1975). In the parameter-fitting methods explicit ex- 
pressions can be written for the moments without the 
uncertainty in determining the saturation points of the 
moments. The small error limits of the parameters are 
conditional, they are valid on the condition that the 
model as a whole with all its parameters yields a correct 
description ot the reality represented by the data. On 
the contrary, the large error limits of the direct 
calculation are due to its independence of models. Each 
quantity is estimated independently on the basis of the 
data and the nature of the quantity. Thus the large 
uncertainty of the resulting value of a quantity is to be 
understood as an indication that any model including 
this quantity as a parameter would lead to a result 

Table 5. Ratios o f  nuclear distributional moments 

Moments (x4)/(x2) z (z4)/(zZ) 2 (x2zZ)/(xZ)(z2) 

Gaussian 3 3 1 
This work 3-04 (29) 2.85 (14) 0.99 (11) 
M & L anharmonic 1 2.91 (17) 2.32 (45) 1.26 (7) 
M & L anharmonic 2 2-99 (16) 2-20 (62) 1.23 (7) 

within these limits and as an indication of the 
uncertainty in the definability of the quantity itself. 
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